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1. INTRODUCTION

In a companion paper, the authors (see Bai, Krishnaiah and Zhao (1986))

considered the problem of estimation of the number of signals and the frequencies

of these signals under a signal processing model with multiple sinusoids. The

number of signals was estimated by using an information theoretic criterion. They

have also established the strong consistency of their estimates. In this paper,

we establish the rates of convergence of the above estimates of the number of

signals and frequencies.
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2. PRELIMINARIES AND STATEMENT OF PROBLEM

Consider the model

y(n) = ajexp(iwin) + w(n), n = 1,2,...,N (2.1)

j=l

where i = V-i, {a.} is a set of complex amplitudes, {wj} is a set of frequencies

and {w(n)} is the noise sequence of independent and identically distributed

(i.i.d.) complex random variables with mean zero and Efw(n) 2 = 2 < 0. We assume

that the frequencies w.6(0,21y) are different from each other. Also, y(n) is
J

complex valued spatial sample observed at n-th array element. We will now des-

cribe the method of estimation of to, the number of signils, and w.ls, theJ

frequencies, considered in our earlier paper (Bai, Krishnaiah and Zhao(1986)). To

determine t0 , it is assumed a prior that t0 < T < -. Let

1 N t (t) 2
St = min{D L b£ vn-) (2.2)

N~)n=t+l Z=0

.(t)
for t = 0,1,... ,T, where the coefficients b are subject to the restriction

t t
b 2 K = 1. Also, let

Z=0

Rt = St + tCN  (2.3)

where C satisfies the following restrictions:
N

(i) lim C = 0 ___

The proposed estimate of t0 is given by t0 where t0 is given by

RO - min{RoR, .. ,RT  (2.5)
0 T.
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Now, let b = (b0 ' .. ,bt P be such thatto0

1 N ___0 _ 2
(N= - - I 1 b - ) 2  (2 .6 )

S0 (N-t 0) n=t0+1 Z0

and let p.exp(i J) be the roots of

fi(z) = I ; z J  (2.7)
j=o 0

where pi > 0 and w. 6[0,2n) for j = 1 "t 0 " Then w, . .. ,w were estimated with
S* 1 t0

wl...,wE respectively. The strong consistency of E and c> 's was also, 
0

established. In this paper, we are interested in establishing the rates of

convergence of the above estimates.

Throughout this paper, A* and A respectively denote transpose of the conjugate

of A and general inverse of A.
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3. CONVERGENCE RATE OF THE ESTIMATE OF THE NUMBER OF SIGNALS

In this section, we establish the rate of convergence of t0' Let

i(t) = N IN
E) I y(n-4) y(n-m), z, m=0,1,...,t, (3.1)

n=t+l

and (t). Also, let bbt P be such that
9.£m - (0 ), ).,t),bsuhta

I N t
st  

I 2
Ntn=t+1 Z=0 ~-~ 32

Here we note that St is the smallest eigenvalue of the matrix (

Denote by 6 Em the Kronecker delta. Write

to 12ei(m-i)w4 2.

= 10 laj e -' + a (m (3.3)

and F (t) = m)for 0 < Z, m < t. We can write -(t) as

9.m Zm

'Y(t) =Y + Jl + J2 + J3 + J4 A + A(t) 34

rm = m 1 2 3 4 Zm +Nem' (3.4)

tO 0 i (m k - j ) I N in l j - k )
Jl = aak ei-- L e

j,k=l N-t n=t+l
j#k

t i(m-)3wj I N i(n-m)wj
J2 a 0a e N-t e m

j=l n=t+l
(3.5)

t- i(m-Z)wj I -i(n-)wn
3 a. e - e w(n-)j=l N-

1 N

N __ 2
J4 = w(n-.)w(n-m)- 6 a 2.n=t+l im

(t) (t) tAWrite the eigenvalues of r as >... > 0. From the structure of
0- t

S(t), we have, for anv t >1,



>t-A (t) > U
0 - 0 - 1 -1 - - t- - t)-

and for t > to

Ao At+ = ... =A t  =0o
t 0 t 0+1 t

(t) (t0 1) 2 (36)
t0_l > 0-t1 > 

(t0-1) 2

Now, let 6 = t - . Also, denote the eigenvalues of r(t) by
t 0-1

t) > A(t) > ... > At . Then by Lemma 2.1 in Bai, Krishnaiah and Zhao (1985),

we have

t W- t ) -xit ),2 t t ) ,It ))2 0 7

4=0

-(t)
Also, since A t  St. we have

ttIs 'k<t)< Vtr(t) )2  t 0,1,2,... ,T. (3.8)

t _ ,r• t).

If t > to, then

-(t) -(t) 2 2 (3.9)
tr(r )r (39

and

tr( 0 -Fto))2 < ( C 3.10)

implies that

Rt  R St  + (t-to)CN

- t0 - t_00N

/ (to) (to) 2
> CN _tItrfit)_ft)) + vtr F -1 )

>0. (3.11)

.6
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Here we use the fact that t )  X 0 a Hence ()t. If t < t then
t to 0 0

(t)-f(t)) 2 < ?
tr(r -r k' N (3.12)

and (3.10) implies that

R - R St  - (t0-t)CR t0 - t 0 (0tN

> X(t )  a 2 {/tr((t)-rt))2 + tr( I t0 ) r t0)02 + (t0-t)CN}

> A - (t0+2)C N > 0

provided that C < A/(t 0+2). Hence 0 # t. Since C - 0 for large N, we have

prvie thatN

C < A/(t +2). Therefore
N 0

T t)_ (t))2 > C'>
P(t0#t 0 < P( U [trWI -F (3.13)

t=0

Theorem 3.1. If we choose CN satisfying the conditions

lim CN = 0 and lim 'N/ CN 
=

N- N- N

2n
then EiW(n)2 < -, n > 1 implies

P(to0tt0 = O(N(N CN)- ),as N - .

Also, E exp{hIW(n)I2 } < 0 for some h > 0, implies

-
6NC

2

P(t0#to) = O(e N), for some 6 > 0.

Proof. Both conclusions of this theorem follow from (3.13) and the expressions

given in (3.5) and the well-known results of limit theorems concerning sums of

independent random variables.

.-
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4. CONVERGENCE RATE OF FREQUENCY ESTIMATES

In this section, we establish the rate of convergence of the frequency

estimates 
. .. .. to E .)

Let b t be the eigenvector of F corresponding to the smallest eigen-

2
value a Also, let

.( n 0t o0

S(I-( t -St I)(r -StoI)(f -St I)") (F -St I)Jbt

0 t0 t0 t0 t0 _t0
- t0) F ttO)

0[I- -S t I)+( -St0 1]bt (4.1)

where B = N is a positive constant which normalizes b t to unit length.

Note that r(tO) and S a , with probability one. When N is larg,to0

enough, we know that

(to) + (

(I-(i Sto I)+T -S toI)j 0  P 0.

Hence b is well-defined. It is easy to verify that b is the eigenvector of
to -to

( to) corresponding to the smallest eigenvalue Sto

Bv the triangle inequality and (4.1), we have

( (t 0 ) + (t 0 )
lb -bt 1 < 21(F -St I) (F -St0)bt0 . (4.2)

Since (r (to)- a2 I)bt0 and I~0 b 1, we have
t -t0 t t

a~ 0 _ 0 0 0~(F~to)(t ob
Since -to = 0 -SoI))to 1 w hv

i (t 0 ) - (t 0ISt -a bI~
(tt0) (t0 ) )

= K(F -r - (Sto-O)lbt0

(t(F(t0 ) -r(t 0 ) ) 2  + a-< [tr(F -0 T]J + IS t -0-1
tO

., 'f• . - . -' ' ' ' '- . '. ' . -,'' .''.'. 'j''.% % '.'" " %% % '% - -" . . . J -' N, "J . "
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Hence
lbtob-i(t& (t) tt o

IbtO tQ 2It 0lS 1 {[tr(r -1 )2 + IStoa}" (4.3)
t -0t0- 0 0

Now, let ,A (to) G" 2 ,0. Also, let n > 0 be a small number such thatt0-1-'

n < A/4(t 0+1). Then, for t to, using (3.7) ly.jz-jl < n, j, z = 0,I,...,t °

implies

(to) _t
triF f 0) )2 ] 

< (t0+l),

9

Is t0°- < t0+1)n,

0

and
(t 0 ) (to) 2 (to) (t 0 ))2)'

- S > X 0 G 2(tr( 0 0 2 2

t -1 t -t-

0 0 0 -

> A- 2(t0+l)n > (4.4)

Thus, by (4.2) - (4.4),

t0- bt0I < 8(t0 +l')A-i (4.5)

For any E > 0, let n = EA/[8(t0 +1)]. Then !Ym-79 ml < n, Z, m = 0,1,...,t

implies that

to btoI < (4.6)

Therefore

t0
Pob -b I E ) < 0-2 > n). (4.7)

-t - tI Y-P mZ
0 0 =0 m=O

Now, define l - b9 as usual if bit b') have common dimensionalitv and

otherwise. Also, b =(bo,bl ...,b .)' From (4.7) we have
0

P(lb-b t '~ Plb t-b ) +i P~t 0t 0  (4.8)
P -t% - _ to b to

/ £- ,j'',,. ._'_, ._- ...- i ": . .. ' . .. , ,'-' ' -.-..-- "." -"-". "-' " -". - -" . / . '. . '" .°'" .'' -°
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From (4.7), (4.8) and what has been proved in Section 3 we obtain the following

theorem.

Theorem 4.1. Let CN be chosen satisfying the conditions

(i) lim CN = 0 (ii) lim INC N/VoglogN
N- N-

Then Ejw(n)f2n < -, n > I implies

PIIb > ) 0(N(NCNV-). (4.9)

Also,

E exp{hlw(n)( 2 } < - for some h > 0

implies

P(jb-bt I > e) = 0(exp{-bNC2}) for some b > 0 (4.10)
0

Since the roots of the polynomial are continuous functions of coefficients

of the polynomial, we have

Theorem 4.2. Suppose pj e 1W j = 0,1,... t0 are the roots of 10 b z
J=0

w. 6[0,2v) and J-.'s are arranged in increasing order. Also, exp(iw), j=0,1,. ..,to

are ranked in the increasing order of w. In addition, let 0 = (p0el , elW l,
iWEO (eWO iut0
i E )'and z =(e 0  e )', we choose C N satisfying the conditions

(i) lim CN = 0, (ii) lim / CN /VloglogN =

N- N N

Then Ejwkn)j2n < -, n > I implies

P(I@-zl > E ) = 0(N(CNN)-Q). (4.11)
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Aslo,

2I

E exp{hjw(n)l2 } 2 - for some h > 0 (4.12)

implies

P(I -zIje) = O2exp{-bNC2}) for some b > 0 (4.13)

We note that (4.12) and (4.13) are respectively equivalent to the

statements that P(max i6-1I1 E) is of order in (4.9) and

P(max I -wd > E) is of order in (4.10) where a A b denotes the minimum of
1<Zi< AtIp t--0 0

a and b.

JI

d|

"pI
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